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Low-Degree Testing

Recall the goal of LinveariTy TESTING:

LFSIF
A test Vin st Y0 F > F
y COmple‘l’enessz ]P-e LINLF, n] — B—[VL;I,:;l]'-' l /R ‘)
- soundness: A(f,Lin[F,n])z§ — B—[Vufﬁl]s &(§) \ [ on
The goal of Low-DeGree TesTinG is: LS
A test Vi, st YOF->F
- completeness: e LD[Fnd) — Pr[V._I,:,=|]=l ,R 2
. soundness: A(f, Lo[Fn,d))z6 » B[VvE=1]<&(s) V o/

What does degree d mean?
+ Total degree  (e.q. in this cose LD[FF,n tet<t) = AFFine [FF,n])
* individval degree (e.q. in this case LD[H", h /‘u\ds\] = “multilinear POlynomia\S‘\ )

ExERCISE: derive o test for individval degree from o test for total degree,

T most applications +he difference total-vs-individual does not matter mych.



Total Low-Degree Testing
T_oday we S’rody ToTAL \ow—degree, fesfingz
[(DLF, n,d] ={ [F—>F ' I peFX,., %] of ToTaL degree <d st p={ }

This set of fonctions is a linear error - correcting code with rich structure

[.P-F

Reed — Muller code :

* messoge length = (") i aam

* blocK  length = Ll
d

o tive distance > |- —
telative distan T

Next: © low-degree testing for LD[F, n=1,d7 (univariate polynomials)

@ extend to nz1 (multivariate polynomials)



Univariate Polynomials: a Trivial Test
NN/

Fact: any d+1 locations Qu,Q,..,04€f determine a polynomial % ]

A natural idea is fo interpolote and fest at a random point:

> F
\/)C (ﬂ:,d):z R Sample reF

2. QUQI’Y -‘: QJ(' O\o/Q\,...,Qd/ F
3. Let P(x) be the interpolation of {(Qi,f(“i))}i_o
4. Check that B(r)=$(r)

query complexify:
d+2=0(d)
[ 8 non-adaptive ]

Completeness: i {=p for a polynomial plx) of degree <d
then P=p and so YreF p(k) =plr)=£(r)

Sowmdness: B[ V'=1] = BB 50 ] < 1-8(F, F9x1)

The query complexity O(d) can be much less than |F| ( reading oll of £).
Exercise: prove that o query complexity of L(d) is necessary.

PRoBLEM: Hhe straightforward extension of this idea to n»1 yields large query complexity



Trivial Test for Multivariate Polynomials

The /'in'l'e\—polafe-m\d—fes’r\‘ idea is an example of a TriviaL TesT.

We describe a trivial test for any property F={f:D-Z}

A fixing st SED for F is such that, ¥a:S-% [{feF | f(S)=all<].

IS

Ve . 1. Sample F <D, /qUQl')' complexity is IS|+1  Completeness: if fe F then
2. Guery fat S and r. Bv-=1=B[pn=fn]=1.
3. Let P be the unique function in F st p(S)=F(S) . Sovndness:
4. Check that F(r)=f(F). B [VE-1]= B[t =f(0] s 1-alF).
Examples of trivial tests:
PPN —_—
F | Aw-2ero | Cowst| Lin(Fn)| LDLF,n=1,d] | LDLF,n,toted] | LDLF,n,inded]
sl | o | h d# (") (dn)" |
The BLR tfest for LiN(F,n) has 3 clueries, much better than +he (n+|)-query trivial fest,

The (d+2)-query trivial test for LD[F n=1,d] is optimal ,
The trivial tests for LD[F,n tot¢d] and LD[F,n,ind¢d] have large query complexity,
Today we see a low-degree test that is much better than the frivial fest.



Univariate Polynomials: a Different Attempt

We tocvs on a special case: = for prime o3 dia.
The fest 1g inspired by a different local characterization of low-degree polynomials:

def: For j- 01,... d+ (l)'“(dH) FF‘ ﬁ a:n a;z 3;3 9;4

lemma: ¥ f: o~ e fFP‘(d[X] <> Yaefp Z{i;’ Ci-f(a+i)=o0

The proof is by induction , vsing formal derivatives.
Ex for d=0: (¢, )=, = =La)+ flan) <0.
Ex for d=1: (Co,6,G)=(-1,2,-\) = - Y0)+2f0+)-Farr) =0 e, Lo L@ flr)—fan - ,

(a+1) - o (a+2) - (at1)

New proPoSaI: V]C:'FP-)FF(H:F,d):z . Sampll l’é—ﬂ:r
2. Query T at r,rH, . r+(d+)

3. CheeK that z‘*“ ¢ L(rri)=o

Projiem: 11+ does not work. [ Not ol local ~characterizations do! ]
Consider {=CF TP 1, which has distance >4-2 to F<[x].

/

This test reyects with probobility only (%m).




A Refined Local Characterization
QF_" For i=0,|,...,d+|, G = (—I)i+|(di+|) = “:F .

lemma: ¥ [: oM ¢ ﬂ:P‘<d[><] < Yaefp 2, G-flati)=o0

corollary: ¥ {:Fo=HF fe “:Psd["] < ¥Yabelfp Zii:: Ci-f(a+ib) =0

oot

For the direction “¢<— set b=1 and invoke +he lemma.

For the direction "=, fix o,befp and consider q(x):=f (ax+b).
The degree o g 1S at most d. Hence, by the lemma,

Veel 0= Zf_‘__"éc;-g(eﬂ) =Z{‘:o' ¢i-f(a+(eti)b) = Z:_: Ci- £ ((oteb)+i-b) .
Now set e=0,and we get the condition for a,b. u

The local constraints increased from [Fpl=p to [l p.

/. \\
The choice of b randomizes the stepsize. ond Seems to rule vt Hhe Covnterexample.



Univariate Polynomials: the Rubinfeld-Sudan Test

Check one of the [Fpl® local constraints at tondom:

-1
f (H%,d)‘ . SQMF\Q S« ﬂ:,: C‘V(I'y COMPIQXH’y:
1. Query { ot r rts,. r+(d+)-s d+2=0(d)
d+\

3. Cheek that 2o Ca--ﬂ:(ri-i-&): 0 [R non—adqp’rive]

Covv\!)ld'cncSS: \I% -FQ ﬂ-"fd[x] then % [VKE =\]=| by corollal'y

Soundness:  theorem: B[ Vig=0] 2 min{w.(3), L-a(, Feom)}

EquivalQnHy; .Er[V,i ] S rrmx{l o) f) 10 IF«i[X})}

Tsnt Hhis test worse ?

* lose a I}aq’ror of 2 In distance (previovsly Pr [VF—0]>A 4? ﬂ-‘fd[x]))
* high-agreement  regime: even it £ is H-far, we get error only <1-0(%),
so we need to repeat the test O(d") times for constant error — O(d) queries

RBuT: RS test extends to multivariate Polynomia\s with no charxges



bR

Proof overview Vis = |. Somple rsefR
F o r2s  PHS 2. -H.\+ Ziﬂ C- (F+is) =
Similar fo the case of linearity testing. S pas reSS Chtk that Z;., G (ris)= o
t+heorem: B’[VR{;:O] > h'ﬁn{4 (dl )z 1 A('F ﬂ:;d[)(])}

The plvmlH-y correction is

SQ: F->F where ac X): —(1\'8 Max {Seﬂ} , V= Z:l:;' Ci"F(X'l-i'S)} .

VelFP

» Fart I: B‘[Vg{:g’-'o] 2%°A(£ng) far from plurality cortection = many bad lines

o fart 2 J?n-[ Vks O] < 4(d Ganr ke ﬂ';‘d[)‘] few bod lines - plurality correction is low-degree

Conclusion:

- I—F Pr rVgﬁ‘; W 2 40(;1)7. +hen we are done.
_ vE o] i
IC  Pr| Vi =0 | < i (114-1)" then (by Port 2) gp i low-degree and (by Part | ) we qd'

fr[\/Kg:O]Zl—' (“1 8{) /— A(F H: [X] B

2



d+i

Analysis of the RS Test - Part 1 ¢t =0 o fo- 2 eil(rvis

{geﬂ'-[', ‘ v= 2. ]C(x+|s)}|

The plurality correction of I s 9 (X) := arg mox

veﬂ}

! g is far from £ then \/R‘cS rejects with kiah probability:
claim: _]2,_[\/“—0] /— 1(3;)
proof: Deline Sz={ - [)c(") # Z:hul G F(H'S)]z"i }

FOl’ €V€.\")’ 1 S/ .gr [ ‘F(\’) = Zf: Ce {(l"\'ig)]?_é (more than half of s's vote for f(r))
SO F(l’) = 3{(|’).

Hence (6, g¢) ¢ EL (v i £ 4000 then re ),

So Pr[VR{::o] = Er[l’eg]ﬁ;\;[\/g-_ol I'GS]-I-fr[l’%S]-%[\/iwlrg’&]

S
N : |
F\ l[nem {f\—[.\f(l—);ﬁZ Ci -F(I’HS)J}'I‘ O
180 .1
2 Hﬂ 7 A(‘F,a{:) 5 - .

10



few bad lines imply

Analysis of the RS Test - Collision Lemma rony otes for

the plurality correction

c\aim: Vl'e\:F\;, fs\—[ %(l’): Z:Tl C;-{:(i”riS)] 2 |=-2 (d‘l'l)’Pl’ [\/,ffoj J
P_fgz{_? Egr [ gx(r)= Zf‘:: Ca~¥(|'+i-s)] = \rlréaé lsir[v: Z.d._.f' ci~¥(r+i-s)]

d+ 2
ot e nalpy 2 7 g B V=Tl afleeis) |

velp s

= B[ T flreis) = S0 e flreit)]

> |- 2:0+)-Br[ V& =0].
We now analyze the CoLLision PrRORABILITY.

FOI’ every S,téﬂ'—' IQ {Vié{\,..., d-l'l} 'y'(r-l- i§)=ZJ}T'C3-Q((r+iS)+3t) } s
Vielt,..,du} f(rejt) = i ci-d((rejt)tis)

d+l d+

'H\QY\ Z G- ‘Y‘(\"HS) = Z‘C:l Ci Z;:' C:" -F ((I"I"lS)‘*‘;‘t) = Z:ithJ .d“ C'""3 ((l’{-j{;){-]g) = % Cj‘ {:(l"l'j {'-') .
i=1 =

HiE

Hence 4 dn el and B(ris) # I L ((reis)+t)
: \e{l,.,d+ TR
E*[?:Ci'¥(r+is)*ZC-‘-HHib)]s Er[or ” HIS)# 2 G x{(rish+) ]
gp - = i=| S = Se{l,...,dﬂ} 'F(""'Jt) + Z?::C'\"g((l‘fjl:)-l-iS)
< 1(d+|)-fr[V,f;=o] , m

11



Analysis of the RS Test - Part 2

Aaim: if E\»[\/kf-o]< 7 then g€ IF;A[X]

4-(d+2)
M_ Fix rsef. We show thot Z,d? Ci- QQ(H-\S) 0.

I It tek st {\he{ou a1} (3‘%3:"3) rn G- $((rais)+) (b +it))
¥iefl, d+|} 2 oGt ¥(r+3t)+|(s+3tz)) o
then

d+

g_o Ci- qp(rtis) = Zii:' G [Zj‘: G+ F((rris)+j (g +i tz))] < ZJ?CJ' [Zl‘: ci-£((rajt)+) (b Q))] - };f.:cy 0=0

reorder
summations

Hence .
‘ég:)?\g : d+ , : :
Br [Z.- G 3¥(l'+|s)¢0] [oa iefo,1, ..dn E\QE\”'S)*ZA G- $((rtis)+] (h"‘tz))}
b [ 3e{l,. ,d+|} TG F(Oreib) +i(sHik)) # 0
I o
< (d+2) (4 (den) 7w <1
Er [%g \'+|S)+-§C Flreishyltiritd) | < 2(d#)- B[ Vi =0] < 2.(dw)- < ——

olision (d+z) 2-(d+2) N

lemma



Extending the RS Test to Multivariate Polynomials

The local characterization holds Similarly:

\d n I )
Ydep-z ¥ -, feR A6 %) & Yabel Ty ci-flarib) =

Total degree
This directly motivates the following fest : guery . complexity is d+2=0(d)
R - —
Vs " (B,n,d):= | Somple s« .
¢
2. Quety {— at F, Fts ..., t+(d+)-s fr/’ P
dt| N
3. Check That Zi, C"_&:(rﬂ'g)- 0 read d+2 locations

The +heorem ‘For soundness is also Similar: on o tandom line
. ! : | <
'H'IQOT'QM. El’\:\/RS: O-] 7 min { (d-l— 7_ i ({_ ﬂ.‘ &[X\, ,)( ])}

The proof is the same up to Syn‘l'ad'ic modifications.

By repeating the test O(d®) times, we gut:
o. total |0W—d13|-ee test with query complexity 0(d?) [.\thPqndan ogl\]

/4 . i \ V4
where “constant relative distance — “constant soundness error .

13



More on Total Low-Degree Testing [1/2]

A Key structure that enables |ow-de3l—ee ‘|'es+in3 is 0. RoBusT Lives CHARACTERIZATION.

Suppose that §:F">F has fotal degree <d.
Then , ¥abef ': the univariate function g (2):= f(a+2:b) has degree <d.

Does Hhe converse hold ?

CounTerRexAMPLE : Set Fi=Fe and fix any d with p'-p*'-1<d<p®

Consider the bivariote function {(x x2):= (Xu-'xz)P- .

- 2l
The totfal degree of £ is q~d. Yot ¥a,b 3a5(2)=¥(0|+25.,01+2bz)= ((GH'EB.)P '(Qz’fzbz))P

h&s dQSl"QQ ot most (P-l) PQ-|= PQ" Pe_', (Indeed tecall that 2= 2 since pe is the field size.)

) =1
The_ converse hO'dS I{: d< Pe" Pe - (Eg. it £ has prime size p then the, condition is dg p-2 ) [ Fried! ,Sudan 1995)

for o proof.

In this case, if {Sa,b(i‘):{:(mzl:)}a bep” Ol have degree ¢d. then f has fotal degree <d.

Low—clegrea. 'l'es+in3 is based on distance variants of such resulfs:

if 1 30’5(2):{:(&»‘25)}&5&“ are close to degree «d in expectation
then f is close to total degree <d

14



More on Total Low-Degree Testing

These statements motivate +he random-line +est .

VMF ~F l. SamPle s« . query complex'rl'y is IFI

2. Query £ ot the line £ ((2):=r+zs, /
3. Check that dea(foﬁ\;skd :

theorem: 3 «xe (0,11 ¥F ¥ :F>F B—[Vf=°] > Af, LD[If,n,Msd])'(r%)x

For every fine AL, &:IF—E'IF

Analyses focus on proving statements

12/2]

15



A few words about low-degree testing

Low-degree testing for quantum states,
and a quantum entangled games PCP for QMA

Anand Natarajan* Thomas Vidick'

Abstract

We show that given an explicit description of a multiplayer game, with a classical verifier and a
constant number of players, it is QM A-hard, under randomized reductions, to distinguish between the
cases when the players have a strategy using entanglement that succeeds with probability 1 in the game,
or when no such strategy succeeds with probability larger than % This proves the “games quantum PCP
conjecture” of Fitzsimons and the second author (ITCS’15), albeit under randomized reductions.

The core component in our reduction is a construction of a family of two-player games for testing
n-qubit maximally entangled states. For any integer n > 2, we give such a game in which questions
from the verifier are O(logn) bits long, and answers are poly(loglog ) bits long. We show that for
any constant ¢ > 0, any strategy that succeeds with probability at least 1 — ¢ in the test must use a state
that is within distance §(¢) = O(€°) from a state that is locally equivalent to a maximally entangled state
on n qubits, for some universal constant ¢ > 0. The construction is based on the classical plane-vs-point
test for multivariate low-degree polynomials of Raz and Safra (STOC’97). We extend the classical test to
the quantum regime by executing independent copies of the test in the generalized Pauli X and Z bases

Low-degree tests at large distances

Alex Samorodnitsky*

September 27, 2018

Abstract

We define tests of boolean functions which distinguish between linear (or quadratic)

Testing Low-Degree Polynomials over GF'(2)

Noga Alon * Tali Kaufman Michael Krivelevich * Simon Litsyn ®
Dana Ronf

July 9, 2003

Abstract

We describe an efficient randomized algorithm to test if a given binary function f : {0,1}" —
{0,1} is a low-degree polynomial (that is, a sum of low-degree monomials). For a given integer
k > 1 and a given real € > 0, the algorithm queries f at O(% + k4F) points. If f is a polynomial
of degree at most k, the algorithm always accepts, and if the value of f has to be modified on at
least an e fraction of all inputs in order to transform it to such a polynomial, then the algorithm
rejects with probability at least 2/3. Our result is essentially tight: Any algorithm for testing
degree-k polynomials over GF(2) must perform Q(2 4 2F) queries.

€

te sense, from these poly-
etween soundness and the

»rmity norms behave “ran-

f of an inverse theorem for

remmmesET

SesetMmmsmetlT . .

A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant

Improved low-degree testing and its applications Error-Probability PCP C
Sanjeev Arora* Madhu Sudan'
Princeton University [BM T. J. Watson Research Center Ran Raz |
Abstract 1 Introduction Abstract

NP = PCP(logn,1) and related results crucially de-
pend upon the close connection between the probability with
which a function passes a low degree test and the distance
of this function to the nearest degree d polynomial. In
this paper we study a test proposed by Rubinfeld and Su-
dan [29]. The strongest previously known connection for
this test states that a function passes the test with probability

The use of algebraic techniques has
(probabilistic) characterizations of tr We introduce a new low-degree-test, one that uses the
classes. These characterizations invol restriction of low-degree polynomials to planes (i.e.,
tween an untrustworthy prover (or r affine sub-spaces of dimension 2), rather than the re-
glo;y:o;né;l(lt::: \;e)n[flcrsl lsnM\::ﬁ: striction to lines (i.e., affine sub-spaces of dimension
cally verify ws;usﬁ‘i)iuty of abool 1)- We prove the new test to be of a very small error-

ing very few bits in a “proof string” p probability (in particular, much smaller than constant).

4 for so 7/8 iff the functi cment = § with In IP=PSPACE [24 31] the veri The new test enables us to prove a low-error char-

acterization of NP in terms of PCP. Specifically, our
theorem states that, for any given € > 0, membership
in any NP language can be verified with O(1) accesses,

haracterization of NP *

Shmuel Safra *

of the most fundamental avenues of research in theory
of computer-science.

Since the early days, when the classes P and NP were
defined, and the question was posed as to whether they
are the same or do they differ, many problems were
shown to be NP-complete, thereby increasing the weight
on finding stricter characterization for the class NP.

NP has since been given a few alternative charac-
terizations. The one most commonly applied being
Cook’s [CooT71], which characterizes NP in terms of effi-
cient verification of proofs (or nondeterministic compu-

et et

tations).
—astmmeSEET
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